欢迎来到云乔科技(北京)有限公司官方网站!
服务热线: 400-152-6766 / 010-68968799

业务微信
技术支持 Case
技术园地
来源:
发布时间: 2021 - 09 - 08
大家好,正如我们所知,当今很多工程师利用OTDR测试仪进行光纤链路的维护和故障定位,我们本期为大家介绍的就是OTDR测试中需要使用的补偿光纤。大家可以看到(参考上图),福禄克OTDR光纤测试仪在设置里面有设置补偿光纤的选项,那是什么意思呢?为什么要进行光纤的补偿设置?首先,补偿光纤包括前导光纤和尾纤,由于之前测试的时候是将被测链路直接插在仪器上进行测试,这样做的话有个小问题,被测链路的第一个头由于直接插在仪器上,精度再高的仪器也会有个反应盲区,第一个头是测不出来的。因此,前导光纤是为了避开端口盲区,从而看清被测链路的第一个连接器。同样的道理,如果被测光纤不接尾纤的话,光直接射到空气中,反射会比较大,直接判断为不合格,无法判断最后一个头质量的好坏,因此,尾纤是为了加一段光纤来仿真实际反射的状况,以此来评估光纤末端的连接质量。因此,我们建议您使用前导光纤和尾纤。此外,要使用前导和尾纤补偿功能,福禄克设备给您提供四个选项,以便在OTDR测试中减去这段光纤的长度,如果您试图在无前导光纤和尾纤的情况下进行测试的时候,我们的OTDR设备会显示一个警告信息。其中第一个选项代表只使用前导光纤,第二个选择为前导光纤和尾纤,第三个选择是前导光纤、光纤和尾纤,第四个即手动设置,一般是当有APC连接的单模光纤时使用。下面我们看一下使用前导光纤测试失败的一个案例,让我们分析一下他为什么会失败呢?在本案例中(参考上图),我们可以看到测试仪器连着一条2.12米的前导光纤,并且在2.12米处我们能看到一个连接器,但是不能测量它的损耗,这是为什么呢?因为在进行OTDR测试时国际标准有规定,前导光纤不应短于75米,尾纤不应短于25米,为了使用方便,前导光纤和尾纤通常采用同规格的光纤,且长度一般取多模光纤100米左右,单模最短要求130米。
来源: 文章转自福禄克网络
发布时间: 2021 - 08 - 11
大家好,在介绍本期OTDR曲线中的事件类型之前,我们先复习下为什么要进行OTDR测试以及OTDR是如何检测每个连接器、熔接点、光纤的质量的。点击链接【系列技术课程】第三十讲:一文搞懂OTDR原理和我们一起回顾上期内容,有助于我们从OTDR曲线中发现问题。我们通过上期内容了解了反射、散射的原理,现在我们结合上图,形象的看下正常连接点的光反射OTDR图形是什么样子的,首先是UPC连接,大家都知道UPC连接的端面是超球面,即使再精密的端面连接也会有间隙,也就是会有空气,折射率肯定就会变化,就会有反射,所以我们可以想象,连接点的OTDR曲线,肯定是有一个反射尖峰,会有一个损耗落差,上图非常形象的表现了,反射尖峰和损耗落差。与第一张图片相比,以上这个光纤在连接器的地方因为脏污,有很大的反射尖峰和损耗落差。大家都知道,反射和损耗是影响光信号传输的重要因素,如果反射和损耗不合格,会给我们的网络造成误码、丢包,甚至断网等多个不稳定现象。所以大家在看OTDR曲线的时候,如果发现连接器的位置有极高的反射尖峰和损耗落差,一定要注意检查连接器,进行查看、清洁工作。接下来,我们看下APC连接(上图),与UPC连接相比,APC连接的位置没有反射尖峰,只有一个损耗落差。说到这里小伙伴可能会问,为什么APC连接与UPC连接相比,没有反射尖峰呢?这是因为光在通过UPC连接时产生的反射会原路返回,而APC连接物理接触面设计为斜8°C角,光在通过的时候产生的反射会直接进入包层,从而消失,不会对链路中原有的光信号产生干扰,非常有效的减少反射值。目前大部分光纤所使用的都是UPC连接。由于APC连接造价成本的原因,只有在40G/100G以上的高速单模光纤链路中才会使用。有关光纤端面的更多内容,我们将会在之后安排相关主题进行介绍。同样的,参考上图,如果APC端面脏污,其OTDR的曲线图会有反射和损耗落差。这以...
来源: 文章转自福禄克网络
发布时间: 2021 - 08 - 09
OTDR,中文名称是:光时域反射仪,是常用的光纤测试工具。这里的O代表 Optical,光学的意思,而TD代表Time Domain,即时域的意思,R代表Reflectometer, 即反射计的意思。我们知道,光纤多数是由高纯石英玻璃构成,而玻璃分子都是晶格结构,晶格结构实际上是不均匀的,当携带信号能量的光子遇到它们时会有少量发生方向的改变(散射)。另外,光纤中还存在着一些杂质、气泡与微弯结构,光子遇到它们时也会改变方向朝四面八方散射。其实,OTDR仪表正是利用这些特点,往光纤中发射非常短的光脉冲,然后使用光检测器件观测非常微弱的反射情况,通过分析后,可以识别损耗、反射及其他事件。OTDR就像光纤界的雷达,如果我们用一台光信号发生仪向光纤链路中注入一束持续时间很短的光脉冲,那么此脉冲的光能量在向前传输的过程中遇到不均匀的晶格结构和杂质微粒时,就会有极微弱能量散射到四面八方,此散射又称为瑞利散射,其中有一部分会沿来路的方向完全反射回去,这部分称为逆向散射。同时如果光脉冲向前传输时遇到连接器,光子在此处遇到了介质突变,突变界面就有不少光子会被反射回去,也称为菲涅尔反射,反射能量可达前向传输光能量的8%。所以我们可以在光纤的信号注入端口内同时设计一套接收返回来的光信号的装置,将逆向散射和反射光信号采样并记录下来,再进行分析。夜晚看到的电筒光束接下来,我们进一步了解一下瑞利散射。日常生活中,晚上我们打开手电筒,会看光束,但是为什么会看到光束?是因为空气中的灰尘和雾气导致光发生的散射,部分光进入我们的眼睛,所以我们看到了它,所有微粒的散射,形成了一条光束。而且雾气浓时,光束会显得浓密,反之就稀疏。如果是在真空中,就看不到这样的光束了。
来源: 文章转自福禄克网络
发布时间: 2021 - 08 - 04
根据测试标准,光纤测试分为一级测试和二级测试,一级测试也就是基础测试,即是通过光源和光功率计进行的双端测试,测试参数为损耗和长度来评估光纤链路的整体传输质量是否符合相应的标准,查阅更多关于光纤一级测试的详细内容,欢迎各位福粉点击【系列技术课程】第二十四讲:什么是光纤一级测试?二级测试即是在一级测试的基础上再增加OTDR的补充测试,再进行判断就是二级测试。OTDR是单端测试,二级测试的参数是损耗和回波损耗。那为什么要进行二级测试呢?是因为现在的高速光纤链路越来越多,很多测试通过了一级测试但在网络传输中还是发现有大量的误码出现,其实是因为光纤的某个熔接点或耦合点出了问题,这个点的损耗过高且超过标准所要求的范围,导致传输出了问题。那为什么以前在做光纤验收测试时只做光纤损耗测试就行了呢?那是因为以前大家光纤传输速度相对不高,大多数是万兆,但现在高速光纤大量增加,如10G、40G、100G、400G,同时高带宽和高负荷的网络应用也在增加,如高清视频、语音、大量的在线交易等。在使用时不仅需要保证光纤损耗合格,同时光纤上的每一个点都要合格,这样高速光纤在传输时才会有保障。那我们举个易懂的例子,大家在开车时都经历过碾压石子,如果速度比较低时比如60km/h的速度下,我们发现石子对车的影响是不大的,但如果在F1的赛道上出现一个石子,赛车在高速碾压时是非常危险的,会造成爆胎有可能就会造成车毁人亡的事故,因此F1赛道在比赛前会非常认真的清理赛道。
来源: 文章转自福禄克网络
发布时间: 2021 - 08 - 02
在往期的【系列技术课程】中,我们分别为大家介绍了如何使用“一跳线法”和“两跳线法”进行跳线基准设置,欢迎各位福粉在文末的“往期内容回顾”中查阅。本期我们给大家讲解一下光纤一级测试中的三跳线设置参考即“三跳线法”,也叫做方法C。三跳线设置参考,顾名思义,需要用到三条跳线进行参考设置。如上图所示,以多模为例,左边是光源,右边是光功率计,在设置参考时,将3根跳线连接在一起设置参考,设置参考后,将中间的参考跳线撤下来,替换成被测链路,这样测的结果不包含连接器1和连接器2的损耗,因此,三跳线设置参考的方法适合于测量通道光纤链路及MPO链路。不难发现,这样测量结果还比实际结果小一些,因为撤下来一根跳线,因此所用的参考跳线,尤其是中间的短跳线,质量的好坏会直接影响测量结果的偏差大小。为此,福禄克网络测试设备引入TRC验证功能,以确保使用的TRC,也就是参考跳线是合格的。接下来,我们以MPO链路的测试,来看看三跳线设置参考的具体操作步骤。首先参考上图,将光源和光功率计通过EF兼容的参考跳线连接起来,进行归零,此时的参考值应为-24dBm左右 。第二步,参考上图,从光功率计处断开,双向各增加一根参考跳线,通过单模耦合器将光源和光功率计再次连接起来,进行测试,确保测试结果小于0.15dB。如果符合要求,再次设参考 。
来源: 文章转自福禄克网络
发布时间: 2021 - 07 - 28
在上期的【系列技术课程】中,我们为大家介绍了如何使用“一跳线法”进行跳线基准设置,还没有阅读过的福粉们,点击【系列技术课程】第二十六讲:跳线设置基准(一跳线法)迅速“补补课”。本期我们先回顾一下一级测试的概念,正如大家所知,一级测试是普遍使用的测试方式,就是用一个光源和一个光功率计,在光纤的一端接上光源,并在光纤的另一端接上光功率计,由于这根光纤是有损耗的,因而可以通过这种方式测到光功率的衰减情况。 在实际测试的时候,我们一般不能直接把被测光纤插在光源和光功率计的端口上,特别是不能直接插在光源接口上,这是为什么呢?因为光源是一个精度很高的设备,接插拔时容易引起误差,且从寿命角度,插拔次数也是有限的,考虑到更换的成本较高,所以实际进行测试时候都要使用测试跳线,也就是把测试跳线的一头插在光源和光功率计上,跳线的另一头插在被测的光纤链路上,这样被测光纤链路在测试的时候真正被磨损的是我们用来的测试用的测试跳线,当然测试跳线也会磨损,但相对于光源光功率计组件的成本要低很多。所以,在进行光纤损耗测试时,一定要使用测试跳线。那么我们来看一下“两跳线法”测试是如何进行的。
来源: 文章转自福禄克
发布时间: 2021 - 07 - 26
大家好,本期我们和大家一起探讨一下,如何使用“一跳线法”在光纤认证测试中进行基准设置?顾名思义,“一跳线法”就是用一根跳线把两块仪表进行连接,连接后进行基准设置。设置基准的步骤如下:首先将一根测试跳线连接到仪表的光源接口,另外一端连接到另外一台仪表的光功率接口上设置基准,设置完成后,断开光功率计接口并连接一根辅助跳线。连接完成后,验证一下辅助跳线的跳线性能,断开辅助跳线,把被测链路接到辅助跳线中进行测试。一跳线设置基准测试方法主要用于被测链路中两端包含法兰的这种链路。下面我们来看一下具体设置步骤(参考上图),大家看到“步骤1”就是拿一根跳线把两块仪表连接,其中一端连接仪表的光功率计端口,另外一端连接仪表的光源,连接后对仪表进行基准设置。在“步骤2”中,断开光功率接口。于“步骤3中”,添加一根辅助跳线。于“步骤4中”,使用一个法兰,将两根测试跳线连接在一起,进行验证,验证通过后把被测链路接入到测试跳线中进行测试,大家可以看到在“步骤5”中,这个光纤链路两端是有法兰接口的,这样可以更方便地连接到我们的测试跳线中。
来源: 文章转自福禄克网络
发布时间: 2021 - 07 - 21
我们经常听到,在做光纤一级测试时,也就是光纤链路损耗测试时需要根据被测试链路的不同选择合适的设置基准方式,但是有的小伙伴就非常困惑,为什么在光纤一级测试前一定要使用光纤测试跳线设置基准呢?我不设置参考直接用光源光功率接到被测链路里面去测试不行吗?当然不行!下面我们就给大家讲讲为什么光纤链路测试损耗一定要设置基准。要回答这个问题,先要了解光纤链路的损耗测试也就是光纤一级测试的原理,没有看过上期内容的福粉,也可以点击链接补补课【系列技术课程】第二十四讲:什么是光纤一级测试?。在国际标准中光纤一级测试的专业术语叫做OLTS测试,中文即光纤链路损耗测试套件,或者叫做LSPM即光源光功率的测试。多模的链路损耗测试采用的波长是850nm和1300nm,单模测试的波长采用的主要是1310nm和1550nm,有一些特殊场景还会用到1490nm和1625nm。我们为什么要设置参考呢?我们不妨看上图,假设光源输出功率是Po,光源和被测链路连接处的损耗是P1,被测链路本身损耗是P2,被测链路和光功率接口连接处的损耗是P3,光功率实际收到的功率值是Pi。则:Pi=Po-P1-P2-P3,所以Po-Pi=P1+P2+P3,由此我们知道,光源的输出功率减去光功率收到的功率值,并不等于被测链路的损耗,而是在被测链路损耗值基础上还要加上光源光功率接口处的损耗,往往光源端口处的损耗是非常大的,所以如果不把测试结果中扣除光源端口连接处和光功率端口连接处的损耗,无法准确得到被测链路损耗值,所以无论用什么光源光功率做链路损耗测试,都必须要设置参考,设置参考的过程也就是把非被测链路之外的部分的损耗扣除的过程,又叫做归零。
来源: 文章转自福禄克网络
发布时间: 2021 - 07 - 19
大家好,本期我们将和大家一起讨论什么是光纤一级测试?不管是单模光纤还是多模光纤,它们都是由玻璃纤维构成,光脉冲信号在其中传输的时候不可避免的会产生自然损耗,甚至在质量较差的网络中还存在着附加损耗。那么如何去评定已经安装完成的光纤网络的质量呢?早期是通过测试链路中总的衰减来评估,总的衰减包括光纤连接头、光纤连接器插座(也就是耦合器)、熔接点还有光纤本身的损耗,大多数标准还规定了链路的长度,以上这些共同构成了光纤一级测试。后来随着光纤网络带宽的不断升级,在光纤一级测试的基础上又形成了光纤二级测试,增加了OTDR用来判定每个连接器和连接点还有光纤本身的质量。我们将会在之后的系列技术课程中和大家一起讨论光纤二级测试。值得注意的是,光纤二级测试是包含光纤一级测试内容的,OTDR还无法取代光纤一级测试,因此光纤一级测试是首选的光纤网络质量验收评定标准。用来测试光纤损耗的设备,我们称为OLTS,是Optical Loss Test Set的首字母缩写,也称为LSPM Light Source And Power Meter 顾名思义就是光源和功率计设备,光源发射测试光信号,然后通过被测链路后,进入光功率计从而计算衰减,测试的指标包含链路的整体衰减和链路的长度。测试原理即两次数值的比较值,通过光功率计读取设置基准时的光功率和接入被测链路时接收到的光功率,将两者相减,取对数计算为分贝值。
来源: 文章转自福禄克网络
发布时间: 2021 - 07 - 12
大家好,本期我们和大家一起讨论多模光纤测试中一个特殊的要求,环通量EF。在上图中,自上而下,分别是LED光源、VCSEL垂直腔表面发射激光以及激光光源。我们理想的光源当然是平行光入射,没有入射角的,但除了激光光源外,很难实现没有入射角的投射方式,然而事实上激光光源也是有入射角,只是非常小,可以忽略。我们来看LED入射方式,它其实是通过满注入的方式投射到光纤,我们知道多模光纤孔径是62.5微米或者50微米,当LED投射到光纤端面,如果把投射面看作一个射击靶盘,那么满注入相当于光源投射在直径为100微米的靶盘内,而VCSEL光源相当于投射的直径为35微米的靶盘内,激光光源投射的是直径为10微米的靶盘内。也就是说,不同光源会导致不同靶盘面积,这个我们可以把它看作入射光的通过量。日常使用时,我们连接光纤时,由于对位不齐,很容易造成极小偏芯的情况,这使得采用LED光源做测试时,会带来很大的不确定度,严重的可以导致50%以上不确定度,因此国际标准ISO11801和TIA568.3-D以及国标GB50312中都增加了对测试仪表光源发光的EF环通量的要求,即将靶盘有效区域控制在一定区域内,一般控制在直径45微米以内的区域内,这样测试的不确定性能够降至10%以内。在上图中我们可以看到,要实现稳定的EF光环通量,不仅需要支持EF-LED的优化光源,也需要加入支持EF环通量的光纤测试跳线,我们一般把它称作EF饼干跳线,通过EF调节后,使得光纤输出末端的光能量集中在半径是22μm~25μm的靶心区域。
来源: 文章转自福禄克网络
发布时间: 2021 - 07 - 07
大家好,本期内容的主题是光纤的连接和连接器,想必大家都了解光纤传输具有传输频带宽、通信容量大、损耗低、不受电磁干扰、重量轻等优点,因而成为现在比较流行的传输媒介。我们常常会在光纤布线或者施工过程中遇到光纤连接的一些问题,例如一般情况下我们采用什么方式进行光纤的连接呢?各个连接方式都各有什么优缺点呢?本期我们将围绕光纤的连接和连接器和大家展开探讨。01光纤的连接方式机械连接,就是通过我们的光纤连接器或者叫光纤耦合器,法兰将我们的光纤连接到一起,如下图中展示的是我们比较常见的一些连接器的种类。熔接,用光纤熔接机把两个光纤烧熔了以后自动熔接在一起。熔接的话需要使用光纤熔接机,如左下图所示,和光纤切刀如右下图所示,将两根光纤接起来,不需要其它辅助材料。使用熔接方式的话优点是质量稳定,后期维护成本比较低,连接点损耗比较小,大约0.03dB至0.05dB。 缺点是设备成本较高,设备是需要充电进行工作的,并且设备的储电能力有限,野外作业受限制。 冷接,不需要加热而是通过光纤冷接子直接把两根光纤对接到了一起。冷接的话不需要太多设备,使用光纤切刀即可,但每个接点需要一个快速连接器或者叫冷接子,如左下图所示,冷接子的横切面如右下图所示,内部的主要部件就是一个精密的v型槽,在两根尾纤拨纤之后利用冷接子来实现两根尾纤的对接。 使用冷接的优点是便于操作,适合野外作业。但是缺点是损耗偏大,每个点的损耗约0.1至0.2dB,且国内目前可以直接生产冷接子的厂家较少,成本较高,其次冷接子中使用的匹配液需要经受时间的考验。02光纤的连接器大家在施工过程中可能会遇到各式各样的光纤连接器,下图是各个光纤连接器的图片对应的名称,我们将对以下的光纤连接器进行逐一介绍。SC型光纤连接器:由日本NTT公司开发的光纤连接器,材质为塑料的,是连接GBIC光模块的连接器,在路由器和交换机上用的最多...
来源: 文章转自福禄克网络
发布时间: 2021 - 07 - 05
大家好,今天为大家分享一个小知识——光纤的端面。在本期内容中,我们将主要讨论以下这几个知识点:光纤端面的类型、注意事项以及损耗限值。光纤端面的类型,是随着研磨技术的不断发展而变化的,从起初的平面研磨、球面研磨、到斜球面研磨。研磨技术的不断精细,使光纤通过耦合器连接时的反射和损耗大幅度降低,从而使光纤在进行长距离高速数据传输时发挥其绝对优势。研磨技术的更新,其目的就是减少光纤在连接点的反射和损耗,大家都知道,光纤的反射和损耗主要是因为折射率的变化引起的,所以光纤链路损耗主要来自于连接点,减少光纤连接之间的空隙,从而降低光纤链路的反射和损耗,是光纤技术一直追求的目标。接下来我们将为大家讲解各个端面。01PC球面研磨首先是PC球面研磨,通过这张图片我们可以清楚的看到,光纤的物理接触面是球面的,这样做的好处是相对于平面研磨接触,减少了光纤接触的缝隙,也相对减少了在连接点的反射和损耗,因为平面研磨做工再好也会有间隙,反射和损耗值会非常大。02UPC超球面研磨我们再来说一下UPC超球面研磨,它在PC球面研磨的基础上,使用多个等级抛光光纤端面,将连接头的接触面设计为凸起,在连接时物理接触会更为紧密,更为可靠,反射值进一步降低。03APC斜球面研磨随着40G/100G应用的使用,对于光纤链路的反射要求变得更高,APC斜球面研磨应运而生。从图中可以看出,它的端面设计为斜8°C角,这样的设计会使光纤的反射值更小,什么原因呢?PC/UPC研磨产生的反射会原路返回,对有用的光信号产生干扰,而APC研磨,由于端面是斜8°c角的原因,反射的光直接进入包层,从而消失,不会对链路中的光信号产生干扰,非常有效的减少反射值。大家看看上图中这个斜八度角,不知道大家有没有想到什么呢?那我问一个小问题了,APC端面的光纤是否可以和UPC端面的光纤混接呢?
来源: 文章转自福禄克网络
发布时间: 2021 - 06 - 30
为什么我们总是看到不同颜色的光纤和光纤接头呢?本期我们就来为大家解答这个疑惑!通过上期内容的讲解【系列技术课程】第十八讲:光纤命名,大家想必都知道了光纤分单、多模,单模分为 OS1a、OS2,OS1a是OS1的替代。多模又分为OM1至OM5,通常我们在机房或者其他的光纤施工现场会看到颜色多种多样的光纤跳线,为什么他们要有不同颜色呢?是为了美观还是不同厂家的喜好呢?很显然都不是的,真正原因是为了让我们更好的区分光纤的种类,防止我们错接错用,因为如果不做好光纤及其连接头颜色的规范,我们就无法区分光纤的种类,就会导致通信网络中因为混用不同类型光纤而故障频出。多模OM1、OM2光纤的外皮为橙色 OM3、OM4外皮是湖蓝色,也有一部分OM4使用紫罗兰色。OM5光纤是柠檬绿 。单模OS1、OS1a 、OS2外皮都是黄色。 再来说接头,一般多模光纤的接头和保护套是米色也有用灰色的。单模接头和保护套一般为蓝色。需要着重说明的是,多模的OM5光纤的接头和单模光纤APC研磨的接头都是绿色的,同是绿色接头怎么来区分是OM5光纤还是单模光纤呢?那这就需要配合光纤外皮的颜色来区分,光纤外皮是柠檬绿,接头也是绿的就是OM5光纤。光纤外皮是黄色,接头是绿色的,是单模APC光纤。需要强调的是,接头是APC的光纤与之连接的光纤也必须是APC接头。
来源: 文章转自福禄克网络
发布时间: 2021 - 06 - 23
大家好,本期我们一起讨论下在光纤测试中经常会听到的两个名词,模式带宽和网络应用,看看他们在光纤测试中的用途及对我们实际应用的光纤链路有什么影响?模式带宽我们提到模式带宽就要先从光在光纤中是如何传播和光纤的模式色散说起。光在光纤中的传播主要是依据全反射的原理,纤芯和包层由于折射率的不同,光在纤芯中通过全反射进行传输,了解了光的反射原理,我们再看下模式色散。光纤的模式色散只有多模光纤中才存在,因为光子进入光纤的角度不同,到达末端的时间先后不同(同进不同出),这样就造成了光脉冲的展宽,从而出现色散。如上图所示,多模光纤,指的就是光通过多角度进入到纤芯内,通过多条路径进行数据传输,注入多模光纤中的光脉冲是非常有规律的,但是由于光的路径不同,光脉冲到达另一端的时间也会有一定的差距,后面脉冲图形就会被展宽,也就是产生模式色散,光纤的色散现象对光纤通信传输影响很大,当脉冲展宽越大,脉冲就会重叠\黏连,这就会导致接收到的信号就会出现误码,重传等传输问题。使用长度越长的光纤就要拉长脉冲间距,导致传输速率降低,从而减少了通信容量,因此,为了避免误码升高和高性能的传输要求,光纤的传输距离就要缩短,总而言之,多模光纤由于有模式色散,同时带宽要求越来越高,所以在选择使用多模光纤时一定要多注意,多进行测试。模式带宽的单位我们来看看模式带宽的单位MHz.km,和我们刚才总结的结果是对应的,模式带宽与频率、长度相关,不同的光纤类型,模式带宽是不同的,而模式带宽是一个定值,也就是说,频率和长度是互斥的,带宽速率和长度也是相对的。
来源: 文章转自福禄克网络
发布时间: 2021 - 06 - 21
大家好,我们在学习了【系列技术课程】第十五讲:光纤测试前的安全说明 与【系列技术课程】第十七讲:光纤结构 之后,不知道是不是会有一些福粉也常常对光纤的命名感到困惑呢?今天我们就和大家一起了解一下光纤的命名。以下数值适用于 ANSI/TIA-568.3-D-1和 ISO/IEC 11801:2017 版本 3.0- OM1:62.5 µm 多模光纤,MBW 为 200 MHz·km- OM2:50 µm 多模光纤,MBW 为 500 MHz·km- OM3:50 µm 多模光纤,MBW 为 2000 MHz·km- OM4:50 µm 多模光纤,MBW 为 4700 MHz·km- OM5:50 µm 多模光纤,MBW 为 4700 MHz·km- OS1:9 µm 单模光纤,已经不存在,已经被OS1a所取代- OS2:9 µm 低水峰单模光纤
来源: 文章转自福禄克网络
发布时间: 2021 - 06 - 15
大家好,本期让我们来学习一些关于光纤的基础知识。正如我们所知,光纤通讯在我们今天的社会有着非常广泛的应用。互联网的普及又依托在高性能的数据通讯上,而高速数据通讯,又依赖于高速的传输介质,就是我们今天所说的光纤。No.1光纤的优势首先让我们了解一下,光纤到底有哪些优势。首先就是高带宽,频带的宽窄代表着传输容量的大小,载波频率越高,传输的信号宽度就会越大。另一个非常重要的优势就是低损耗。我们都知道,在铜介质中,高性能的同轴缆,在800mHz的频率下,每公里损耗达到40db,相比之下光纤的损耗就小很多,比如我们现在的高速光纤,可以达到每公里几个db的损耗,这个远远比铜介质损耗小很多。第三个优势呢就是抗干扰能力强。我们都知道铜介质要考虑线对间互相的干扰,还有外来的干扰,而光纤就不存在这些问题。所以很多涉密单位一般会大面积采用光纤。还有一个很重要的优势就是光纤体积很轻。一百米双绞线会很大一箱,但是光纤拿在手里就很小。最后一个优点就是价格低。当然这个价格低也是在一定条件下。因为我们所说的光纤已经比较低价了,但我们仍要考虑光网卡/光收发器的价格。No.2光纤的物理结构光纤是传光的纤维波导或光导纤维的简称。其典型结构是多层同轴圆柱体,如上图所示,自内向外为纤芯、包层和涂覆层。光纤的核心部分是纤芯和包层,其中纤芯由高度透明的材料制成, 是光波的主要传输通道;包层的折射率略小于纤芯,使光的传输性能相对稳定。纤芯粗细、纤芯的材料和包层材料的折射率,对光纤的特性起决定性影响。涂覆层包括一次涂覆、缓冲层和二次涂覆,保护光纤不受水汽的侵蚀和机械的擦伤, 同时又增加光纤的柔韧性, 起着延长光纤寿命的作用。上图是多模光纤和单模光纤的横截面。我们经常看到多模光纤标示着的50/125或者62.5/125,其实这两个数字指的是纤芯的直径和包层的直径。单模纤芯规格是8.3微米,包层也是125微米。
来源: 文章转自福禄克网络
发布时间: 2021 - 06 - 09
本期和大家分享一个我们日常工作中容易忽略的一个环节,这个环节的忽略可能会造成数据线测试不通过或者网络直接掉线等状况,这些状况出现的根本原因可能是链路端接处接头或者模块与线缆匹配问题,也就是我们常说的兼容性问题。不同的品牌接头或模块和线缆匹配可能会存在一定的问题,一般是建议用同一种品牌的线缆和接头,从而避免不同品牌的兼容性问题,但如果因为现场问题,需要选择不同品牌就需要考虑到不同品牌的兼容性问题 。兼容的问题可能就和产品的价格不一定成正比了,也就是说买的比较贵的质量比较好的每个线缆或者模块或者接头单独测试都是质量合格的,但是不同品牌之间的线缆、模块或者接头混合组装使用则可能导致测试结果不合格,所以每一款产品都会有自己较为合适的另一半,因此前期做好选型测试非常重要。
来源: 文章转自福禄克网络
发布时间: 2021 - 06 - 07
恭喜您购得福禄克网络产品。为了保障您的客户权益,从购买福禄克网络产品的第一天起,就能持续获得福禄克网络的长期服务,请注意在收到货品后,留意外包装箱上的二维码标签及说明。每个福禄克网络售出产品在外包装上都有一个二维码(CSN产品序列号),它是除SN系列号之外唯一该产品的身份证明。该CSN系列号,也是您的产品在售后服务、维修、校准时必须要提供的证明。同时它也是帮助您验证该产品是否是正品货的唯一证明,终身可追踪,请妥善保管!
来源: 文章转自福禄克
发布时间: 2021 - 06 - 02
大家好,今天我们和大家一起来探讨光纤测试前的安全说明。也许会有人不明白光纤的安全说明为什么要特别强调,这是因为一旦操作不当,不仅会对人的肉眼造成不可逆的伤害,还会影响光纤检测设备的使用寿命,甚至直接损坏设备。01如何避免对眼睛造成伤害• 任何情况下均不得直视光纤。• 裸眼无法看到使用的波长(真正传输数据的光是肉眼看不到的)。• 通电光纤的功率如果足够大,其发出的光会对视力造成永久伤害。• 现在使用的设备如果偶尔暴露于其照射下,不会对视力造成伤害。• 如果您被告知该光纤未通电,也请当作其通电进行处理。• 永远不要站在光纤接线板前方,除非所有光纤连接器均配有保护帽。• 遵守所在单位规定的安全要求。 02就检测光纤的设备层面• 设备测试建议都是无源测试,即光纤里面不能有光。• 光纤有光会导致测试不准。• 若存在光太强烈,会损坏测试仪器的光功率接口。 03选择最适合的测试仪器为什么严禁我们在测试时直接去观察光源是否有输出呢?因为光通信中使用的波长都是不可见波长,多模光纤传输的波长是850nm和1300nm,单模光纤传输数据的波长是1310nm和1550nm,所以即便我们仅凭肉眼观察也看不到有光输出,但其实这类光对人的眼睛是有可能造成永久伤害的,所以务必当心。当然只要我们注意上述两项安全问题,使用光纤测试仪本身还是非常安全的,当然在使用过程中,即使遇到对端有强光设备,福禄克网络的功率计还是有很大的量程的,不会轻易损坏,同时OTDR类仪表还会自动进行告警,提示检测到对端强光,无法进行测试,起到了很好的保护作用,因此也无需担心仪器被损坏。
来源: 文章转自福禄克网络
发布时间: 2021 - 04 - 28
大家好,今天我们和大家分享一个实际在用户现场的测试案例和报告的解读。用户是一个电力动车车头制造的企业,电力机车车头现在已经普遍采用网络自动化控制,所以在车头内有大量的双绞线的布放,在动车车头出厂之前,用户肯定要对整个车头内所有的双绞线进行测试。当我们到达现场用户现场的时候。发现用户的接头都是使用的特殊规格的,无法直接连接到我们仪表上。通过和用户的沟通,用户帮忙制作了工装线。然后进行实际的测试。用户要求选用应用标准里的profinet来进行测试,测试的过程中,发现用户的线缆合格率很低。只有10%的合格率。发现不通过的线缆中,绝大部分都是由于串扰不合格导致的。后用HDTDX功能查看曲线图发现是由于用户制作车内连接接头时剥线过长导致线缆的绞距改变而引发的串扰问题。发现问题后和用户进行沟通,反应是由于接插件的工艺问题导致的线缆不合格。同时推荐用户使用链路标准对线缆进行检测这样可以更大程度上保证线缆的使用年限,保证信号的实时传输和安全性。最终,用户采纳了我们的意见,把接头的工艺进行了修改同时把测试标准改为链路标准,最终合格率为100%。
来源: 文章转自福禄克网络
发布时间: 2021 - 04 - 25
大家好,本期我们向大家介绍一下满足不同测试需求的福禄克网络产品,在帮助大家能够更详细了解福禄克网络产品的同时,也能为各位福粉找到最适合自己测试需求的产品。我们观念中的光进铜退的现象并未完全发生,随着技术的发展,和新型技术的广泛应用,铜缆并未消退,在高速数据传输中有了新的线缆类型和更多的使用场景。那么这样发展趋势给我们又带来了哪些挑战呢?当然是来源于底层,即物理层。物理层是一切网络的根基,网络根基不牢,将会是一场灾难。大家设想一下物理链路好比我们的高速公路,路况不好,即使驾驶性能跑车估计也开不到100码。同样即使布线系统上配备最强大的服务器,最快的交换机也无济于事。那么我们怎样才能获得坚强的物理层呢?毫无疑问是做基于标准的认证测试。我们需要对网络的物理层在设计、选型、施工、验收、运维这五个环节按照标准做全生命周期的测试。可能有人会问,认证测试和一般的测试有什么区别?肯定是有区别的,针对不同的场景和测试内容,我们主要分三种测试类型,验收测试、鉴定测试、和认证测试。验收测试主要适用于线缆故障诊断,如电缆连接是否正确,如果不正确,原因是什么?如果有断点,位置在哪里?主要是一线网管人员使用,测试工具使用也比较简单。鉴定测试适用于布线系统的维护,例如,现有的链路可支持的网络速率是多少?有没有达到预期要求?现有链路是否支持PoE供电?等运维中需要对网络性能质量进行分析,一般是网络工程师,专业维护人员使用。认证测试适用于工程验收,按照标准进行认证测试,合规测试,主要是专业的布线系统人员进行验收测试和网络布线故障诊断使用。接下来,我们将为大家介绍不同类型的测试,以及对应的相关工具有哪些?验证测试首先是MS-系列设备,针对我们平时经常遇到的电缆连接问题进行分析,如:布线图、电缆长度(开路、短路…等具体故障位置)、检测以太网速率、PoE检测、寻线(配合探头)等等便于工程师迅速排除故障。随着WiF...
来源: 文章转自福禄克网络
发布时间: 2021 - 04 - 21
本期我们和大家分享的话题是以太网供电,即我们常说的PoE的发展以及以太网供电这种应用对双绞线的要求。PoE之所以被越来越广泛的使用,主要是其降低了安装难度和成本。我们可以想一下,采用PoE供电意味着传输数据的网线同时可以提供电能,不需要额外再安装单独的电源线,既降低了安装成本,又降低了安防要求,更容易安装及使用,所以应用范围越来越广,比如我们非常熟悉的无线WIFI的接入点,视频监控摄像头,LED照明系统,智能建筑的访问系统,4G,5G的室内蜂窝覆盖,可能未来还会用用在数据存储,PC和显示器的使用等等。随着PoE的广泛使用,越来越多的应用的需要更高的功率,原有的802..3af和at所支持的15w和30w的功率远远不满足需求,应对这样一个广泛市场需求,IEEE在2018年西雅图的会议上正式发布了最高供电功率90W的802.3bt,新标准除了最高功率支持到90W之外,还提供了多种网络速率的支持,包括2.5G,5G以及最高10G的支持。需要注意的是,POE供电的布线系统不能使用低于 26AWG 的电缆。那么为什么PoE应用需要越来越高的功率呢?下面我们以视频监控为例,让大家看看功率变化带来的影响。01分辨率需求监控摄像头分辨率的提升会对功率要求越来越高,也就是高清摄像头的使用对会对功率要求越来越高。以下面视频监控下的小汽车为例,低分辨率的摄像头只能拍摄到汽车轮廓,而高清摄像头可以清晰拍到车牌。02宽动态范围(WDR)监控摄像头的宽动态范围(WDR)的是否开启也会影响功率的需求,我们可以对比下面的监控视频的差别,左面开启宽动态范围的监控视频的监控画面更清晰,无论是强光还是暗光的地方都拍摄的非常清楚,而右边没有开启宽动态范围的摄像头则整体拍摄画质偏暗,并不是很清楚。03低光环境需求能适应低光环境拍摄的摄像头往往也需要更大的功率,我们看到同样的低光环境,左面的摄像头可以清楚的监控到环境...
来源:
发布时间: 2021 - 04 - 19
位福粉大家好,本期我们将讲解两个反映线缆抗干扰能力的重要参数,这两个参数分别是:TCL横向转换损耗和ELTCTL等电平横向转换转移损耗。在讲这两个参数之前,我们先需要思考一个基本问题,为什么用双绞线传输信号?其实,双绞线才是真正的平衡传输线。为什么呢?大家在下图中可以看到,中间的表示为辐射干扰源,左边的为平行线示意。由于距离干扰源更近一点,蓝色线对中的实线芯线,将比虚线“积累”更多的干扰能量,我们用红色点代表干扰能量。我们注意到,蓝色实线上的红点“个头”略大,蓝色虚线上的红点个头则略小,这就造成线对末端的两根线上的干扰能量强度,积累后出现明显的“差信号”。 而右边的为改进性能而设计的双绞线,蓝色实线B和蓝色虚线A由于经常相对于干扰辐射源距离远近实现“换位”,即轮番靠近,交替远离。因此线对末端积累的差信号几乎为零,当然前提是线对完全对称,且绞结率足够高。以上就是双绞线能抵消外来干扰的原理。 为了让双绞线具有良好的抗干扰能力,首先两根双绞线的长度完全相等,特别是在传输高频信号时;其次,双绞线对的材质和结构尽量均匀、对称。这被称作传输线的平衡性能。传统的考察平衡性的参数有NEXT/FEXT,即近端串扰和远端串扰和 ANEXT/AFEXT,也就是外部近端串扰和外部远端串扰。这些参数主要考察不平衡造成的“线对间干扰”和“缆间干扰”。
来源:
发布时间: 2021 - 04 - 14
各位福粉大家好,今天我们给大家讲解一下福禄克双绞线认证测试中的四个测试参数:ACR-N PS ACR-N;ACR-F和PS ACR-F。ACR是一个缩写,全称为Attenuation-to-Crosstalk Ratio 意思为衰减和串扰的比值,类似于信号噪声比的一个概念。从字面意思上就可以看出,这个参数是一个计算值,不是测试值。是由线缆的衰减和串扰计算得来。分贝数值是对数计算得来,在对数计算中,电压比相当于除法又即减法,故ACR是衰减和串扰的分贝差。它可以直观的反应出双绞线系统的有效的,可用的带宽是多少。ACR参数也分为近端衰减串扰比ACR-N和远端衰减串扰比ACR-F。我们先来看近端衰减串扰比ACR-F。一对双绞线的接收的信号包含两个部分,一是对端发射过来的信号,这个信号要经过整条链路,所以会收到线对的插入损耗也就是衰减参数的影响,所以这个信号准确的来讲就是经过衰减的有用信号,二就是其他线对的串扰信号,包含近端串扰信号NEXT和远端串扰信号FEXT。还有其他的外来干扰的噪声信号,称为外部串扰,会在其他视频里讲述,这里不做讨论。ACR-N是近端衰减串扰比,所以是衰减值比上近端串扰值得出。我们把这个公式变化一下,就等于VR接收电平比上VT发送电平的出来的数值再比上VX串扰电平比上VT发送电平的得出来的数值,分母VT约掉得出VR发送电平比上VX串扰电平,近似于信号噪声比的概念。刚才我们提到了端口收到的串扰信号除了近端串扰还有远端串扰,干扰发生在整个链路中,信号会沿着线缆两个方向都会进行传输,传输到信号发射端会产生近端串扰NEXT,传输到信号接收端产生的就是远端串扰FEXT。(参考:【系列技术课程】第九讲:铜缆检测参数:NEXT 近端串扰)用来衡量远端串扰对有效信号影响的参数就是ACR-F。ACR-F的计算方法和ACR-N的计算方法类似,只是把近端串扰电平换为远端串扰电平就可以...
地址:中国 · 深圳 · 宝安中心区 · 宝源路F518时尚创意园15栋3层
400-152-6766
客服热线:(服务时间 8:00-20:00)
Copyright ©2019 - 2020 云乔科技(北京)有限公司
犀牛云提供企业云服务